Highly Enantioselective Synthesis of Orthogonally Protected (2S)-2,3-Diaminopropanoates through Catalytic Phase-Transfer Aza-*Henry* Reaction

by Gullapalli Kumaraswamy* and Arigala Pitchaiah

Organic Division III, Indian Institute of Chemical Technology, Hyderabad-500607, India (phone: +91-40-27193154; fax: +91-40-27193275; e-mail: gkswamy_iict@yahoo.co.in)

The syntheses of enantiomer-enriched orthogonally protected different (2S)-2,3-diaminopropanoates and unnatural furyl-substituted (*tert*-butoxy)carbonyl (Boc) as well as (benzyloxy)carbonyl (Cbz) protected amino acid esters are accomplished by means of an enantioselective aza-*Henry* reaction. A key feature of this protocol is organocatalysis as a genesis of chirality to ensure high enantioselectivity.

Introduction. – The nonproteinogenic α,β -diamino acids (DAPS) have received renewed attention due to their incorporation into peptides which are used to modulate secondary and tertiary conformation [1]. Furthermore, such peptides resist proteolysis [2]. In addition, the active ingredients derived from these α,β -diamino acids display a wide range of pharmaceutical activities as insulinotropic, antidyslipidemic, and antihyperglycemic agent [3] (see 1–4 in *Fig. 1*). Some α,β -diamino acid derivatives are protein-tyrosine kinase inhibitors and glycoprotein IIb/IIIa receptor antagonists [4a,b]. Furthermore, α,β -diamino acids are part of several β -lactam antibiotics [4c].

(2S)-2,3-Diaminopropanoic acid has been also used to surrogate natural amino acids, *i.e.*, lysine, to investigate the size effect of the side chain on the stability of α -helix formation in simple polypeptides. Additionally, compounds derived from nonproteinogenic α,β -diamino acids such as TAN-1057A (3) and TAN-1057B (4) were found to be dipeptide antibiotics with potent activity against MRSA [5] (*Fig. 1*).

Fig. 1. Pharmaceutically active α , β -diamino acid derivatives

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

 α,β -Diamino esters **5a**, **5b**, **6a**, and **6b** (*Fig. 2*) have been regarded as attractive prominent synthetic targets in view of their various biological activities. The development of simple and efficient methods for the synthesis of enantiomerically pure DAPS from readily available starting materials is always a demanding task. A number of enantioselective synthetic methods for the synthesis of diaminopropanoic acids have been reported thus far [6]. They have been commonly prepared by the *Hoffman* and *Curtius* rearrangement of protected asparagine by using trivalent iodine such as bis(trifluoroacetoxy)iodobenzene (= bis(trifluoroacetato- κ 0)phenyliodine), the *Mitsunobu* reaction of serine, and the *Schmidt* reaction of aspartic acid [7].

A variety of other prominent methods includes the conjugate addition of homochiral lithium N-benzyl-N-(α -methylbenzyl)amide to α,β -unsaturated esters, *in* situ amination with trisyl azide (=2,4,6-triisopropylbenzenesulfonyl azide), hydrogenation of diastereoisomeric enamides, *Sharpless* asymmetric aminohydroxylation of α,β -unsaturated esters, and aziridine ring opening with azide [8]. The genesis of chirality in the above synthetic strategies is either from the chiral pool or initiated through catalytic asymmetric transformations. Herein, we report an alternative synthetic strategy for the synthesis of α,β -diamino esters **5a**, **5b**, **6a**, and **6b** (*Fig.* 2) by means of a catalytic aza-*Henry* reaction.

Results and Discussion. – The aza-Henry reaction is a powerful synthetic transformation that allows creation of a C-C bond bearing vicinal NO₂ and NH₂ functional groups and considered to be a key protocol for the synthesis of N-containing chiral natural products and pharmaceuticals [9]. The asymmetric aza-Henry reaction under phase-transfer catalysis (PTC) is established to be the most consistent reaction to induce chirality with high enantioselectivity. In principle, the stereogenic center in 5a, **5b**, **6a**, and **6b** could be accessed through a catalytic asymmetric aza-*Henry* reaction under PTC conditions by employing N-Boc-furylamines 7a and 7b [10] and MeNO₂ (Boc = (tert-butoxy)carbonyl). We chose the furyl moiety as a masked carboxylic acid as well as to enhance its solubility and to induce high enantioselectivity of the desired product. Consequently, the reaction of 7a with MeNO₂ (10 equiv.), in the presence of quininium catalyst A (12 mol-%) and 1.3 equiv. of CsOH \cdot H₂O at -45° for 30 h led to **8a** in 85% yield with 82% enantiomer excess (ee) [11]. For further enantiomer enrichment of the product 8a, the reaction conditions were optimized by varying the amount of catalyst and the temperature. After considerable experimentation, we accomplished that increasing the catalyst loading from 12 to 15 mol-% and lowering the temperature (-55°) and in the presence of CsOH \cdot H₂O (1.3 equiv.) for 40 h furnished **8a** with 94% ee without compromising the yield (*Scheme 1*). The ee of the desired product was confirmed by chiral HPLC.

It was anticipated that in the presence of diastereoisomeric quinidinium quaternary salt \mathbf{A}' as catalyst, the antipode of $\mathbf{8a}$ would be formed. With catalyst \mathbf{A}' in place of \mathbf{A} under otherwise identical conditions as above, *ent*-**8a** with 40% ee in 85% yield was obtained. Surprisingly, cinchonine salt also did not improve the ee of *ent*-**8a** [11].

Having prepared the *N*-Boc-protected β -nitroamine **8a**, we next proceeded to synthesize **8b**. To this end, the *N*-Cbz-aminosulfone **7b** (Cbz = (benzyloxy)carbonyl) was subjected to the aza-*Henry* reaction in the presence of catalyst **A**, and under identical conditions as for **8a**, this led to the nitro compound **8b** with 99% ee. The ee of **8b** was ascertained by HPLC with respect to the racemic compound (*Chiralpak OD-H*, hexane/EtOH 7:3, 220 nm).

With the optically active compounds **8a** and **8b** in hand, we advanced further. To this end, the furan moiety of **8a** was oxidatively cleaved ($RuCl_3/NaIO_4$) to afford the carboxylic acid, which was subjected to esterification with CH_2N_2 to give **9a** in 72% yield (two steps) (*Scheme 2*). The NO₂ functionality was converted to the primary amine by NaBH₄ in the presence of NiCl₂ · 6 H₂O, and subsequent protection with CbzCl under basic conditions resulted in **5a** in 82% yield. The optical yield of **5a** was established by comparing the magnitude of its optical rotation with that reported in [6a]. The reaction of **10a** with FmocCl (Fmoc = (9*H*-fluoren-9-ylmethoxy)carbonyl) in the presence of base furnished Fmoc-protected **5b** in 62% yield (*Scheme 2*).

Similarly, the reduction of the NO₂ group of **9b** was achieved with NiCl₂ · 6 H₂O/NaBH₄, and protection of the resulting amino group of **10b** with (Boc)₂O led to **6a** in 68% yield (*Scheme 2*). The crude amino derivative **10b** was protected with FmocCl under basic conditions to give **6b** in good yield. The optical yields of the **6a** and **6b** were established by comparing their magnitude of the optical rotation, respectively, with that reported in [6a].

En route to the synthesis of unnatural protected heterocyclic amino acids for our ongoing project, we envisioned to convert the optically pure intermediates **8a** and **8b** into the desired amino acids [12]. Therefore, the nitro derivatives **8a** and **8b** were subjected to oxidation under *Nef* conditions (NaNO₂/DMF) leading to the corresponding acids. Following esterification of the crude acids resulted in Boc-protected furylglycine methyl ester **11a** and the Cbz-protected analog **11b**, respectively, in good yields (*Scheme 3*).

In the course of exploring the synthetic applications of furyl-substituted intermediate **11b**, together with our interest in stereoselective synthesis, prompted us to explore supplementary utility. Hence, **11b** was reduced with DIBAL-H (diisobutylaluminium hydride) at -30° in CH₂Cl₂ followed by protection of the primary alcohol with (*tert*-butyl)dimethylsilyl chloride to give the silyl ether derivative **12**. According to [13b], aza-Achamotowicz reaction of **12** led to a key intermediate for the synthesis of the alkaloid (+)-prosopinine (*Scheme 4*). The same intermediate has also been employed for the synthesis of D- and L-deoxymannojirimycin [13a], and (+)-spectaline [13c].

Conclusions. – In conclusion, we have synthesized different orthogonally protected (2S)-2,3-diaminopropanoates in up to 55% overall yield *via* a modified aza-*Henry* reaction. The present protocol was also employed for the preparation of enantiomerenriched unnatural furyl substituted Boc- and Cbz-protected amino acid esters, respectively, which are considered to be key intermediates for the synthesis of compounds exhibiting anticancer, anti-HIV, and glycosidase-inhibitory activity. Additionally, the application of this methodology is currently under progress for the synthesis of bioactive natural and unnatural products.

We are grateful to Dr. J. S. Yadav, Director, IICT, for his constant encouragement. Financial support was provided by the *DST*, New Delhi, India (Grant No: SR/SI/OC-12/2007), and *UGC* (New Delhi) is gratefully acknowledged for awarding the fellowship to *A*. *P*. Thanks are also due to Dr. *G. V. M. Sharma* for his support.

Experimental Part

General. CH₂Cl₂ was distilled from P₂O₅, THF from Na benzophenone ketyl. All other chemicals used were commercially available. All reactions were conducted under N₂ (*IOLAR*, grade I). Progress of the reactions was monitored by TLC on pre-coated silica gel 60 F_{254} plates (SiO₂, Merck). Column chromatography (CC): SiO₂ grade 60-120 and 100-200 mesh. Optical rotations: Horiba high-sensitive polarimeter; 10 mm cell. IR Spectra: Thermo-Nicolet-FT/IR-5700 instrument; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Varian 200 and 500 or Bruker 300 and 400 at 300, 400, or 500 MHz (¹H) and 75 or 100 MHz (¹³C); in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI- and HR-MS: quadrupole time-of-flight (QTOF) mass spectrometer QSTAR XL (Applied Biosystems MDSSciex, Foster City, USA); in m/z.

tert-*Butyl* N-[*(*IS)-*1-(Furan-2-yl)-2-nitroethyl]carbamate* (**8a**). To *N*-Boc aminosulfone **7a** (1.75 g, 5 mmol) and catalyst **A** (0.342 g, 0.75 mmol) in toluene (0.8M) were added MeNO₂ (2.95 g, 50 mmol) and CsOH \cdot H₂O (1.09 g, 6.5 mmol) successively under N₂ at -55° . The mixture was stirred vigorously for 40 h at -55° . Then, the reaction was quenched with 0.1N HCl (20 ml), and the mixture was slowly allowed to warm to r.t. The aq. layer was extracted with CHCl₃ (3 × 20 ml), the combined org. layer washed with brine (2 × 10 ml), the extract dried (Na₂SO₄) and concentrated, and the residue purified by CC (SiO₂, hexane/AcOEt 8 :2): **8a** (1.08 g, 85%). Semi-solid. HPLC (chiral *OD-H* (λ_{max} 220 nm), hexanes/EtOH 85 :15, 1 ml/min): 94% ee; *t*_R (major) 7.7 min, *t*_R (minor) 10.27 min. [*a*]²⁵₂ = -23.95 (*c* = 2.10, CHCl₃) ([11c]: [*a*]²⁵₂ = +17.72 (*c* = 1.50, CHCl₃)). IR (neat): 3311, 1701, 1532, 1507, 1378, 1331, 1249, 1164. ¹H-NMR (CDCl₃, 500 MHz): 7.36 (*s*, 1 H); 6.32 (*dd*, *J* = 1.6, 3.1, 1 H); 6.29 (*d*, *J* = 3.1, 1 H); 5.44–5.38 (*m*, 1 H); 5.34 (br. *s*, 1 H); 4.87 (*dd*, *J* = 4.5, 12.4, 1 H); 4.68 (*dd*, *J* = 5.5, 12.8, 1 H); 1.45 (*s*, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 154.2; 142.8; 110.6; 107.7; 89.4; 80.8; 47.9; 28.2. ESI-MS: 279 ([*M* + Na]⁺). HR-ESI-MS: 279.0963 ([*M* + Na]⁺, C₁₁H₁₆N₂NaO⁵₅; calc. 279.0956).

Methyl (2S)-2-{[(tert-Butoxy)carbonyl]amino}-3-nitropropanoate (**9a**). To an ice-cold soln. of NaIO₄ (5.2 g, 24.1 mmol) in CCl₄ (20 ml), MeCN (30 ml), and H₂O (20 ml) was added RuCl₃·H₂O (20 mg, 0.07 mol), and stirring was continued for 15 min at 0°. Then, **8a** (0.896 g, 3.5 mmol) in MeCN (10 ml) was added, and stirring was continued for additional 10 min at 0°. The mixture was quenched with H₂O (10 ml), the aq. layer extracted with AcOEt (3 × 20 ml), and the combined org. extract washed with

brine $(1 \times 15 \text{ ml})$, dried (Na_2SO_4) , and concentrated. The crude residue was dissolved in dry CH₂Cl₂ (15 ml) and benzene (5 ml) at 0°. Then, CH₂N₂ in Et₂O (30 mmol) was added. After 3 h of stirring at r.t., the mixture was concentrated and the resulting residue purified by CC (SiO₂, hexane/acetone 85:15): **9a** (0.63 g, 72%). Colorless solid. $[a]_{25}^{25} = -30.25$ (c = 1.5, MeOH) ([6f]: $[a]_{25}^{25} = -31.0$ (c = 1, MeOH)). IR (neat): 3389, 2923, 1718, 1707, 1558, 1501, 1371, 1245, 1134. ¹H-NMR (CDCl₃, 500 MHz): 5.52 (d, J = 6.5, 1 H); 4.86 (dd, J = 3.4, 13.2, 1 H); 4.83 (dd, J = 3.3, 13.4, 1 H); 4.73 – 4.61 (m, 1 H); 3.85 (s, 3 H); 1.46 (s, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 168.7; 155.1; 81.0; 75.4; 53.3; 51.3; 28.1. ESI-MS: 271 ([M + Na]⁺). HR-ESI-MS: 271.0919 ([M + Na]⁺, C₉H₁₆N₂NaO₆⁺; calc. 271.0906).

Methyl (2S)-3-{[(Benzyloxy)carbonyl]amino]-2-[(tert-butoxy)carbonyl]amino]propanoate (**5a**). To **9a** (0.50 g, 2 mmol) and NiCl₂ · 6 H₂O (0.33 g, 2 mmol) in dry MeOH (15 ml) was gradually added NaBH₄ (0.38 g, 10 mmol) under N₂ within 10 min at -5° . The mixture was stirred for 15 min, quenched with sat. NaHCO₃ soln. (10 ml), and filtered through a *Celite* bed. The filtrate was concentrated, the biphasic mixture extracted with AcOEt (3 × 10 ml), the org. layer washed with brine, dried (Na₂SO₄), and concentrated, and the resulting crude **10a** (0.37 g, 82%) subjected to the next reaction. To **10a** (0.11 g, 0.5 mmol) in dry CH₂Cl₂ was added (Boc)₂O (0.16 g, 0.75 mmol) and DMAP (= *N*,*N*-dimethylpyridin-4-amine; 5 mg) sequentially at 0°. The mixture was stirred for 5 h at r.t., then quenched with sat. NH₄Cl soln. (5 ml), and extracted with AcOEt (2 × 10 ml). The extract was washed with brine, dried (Na₂SO₄), and concentrated and the residue purified by CC (SiO₂, hexane/acetone 4 : 1): **5a** (0.13 g, 74%). Brown oil. [a]²⁵₂ = -18.5 (c = 2.0, CHCl₃). IR (neat): 3324, 2922, 2853, 1707, 1501, 1457, 1319, 1211. ¹H-NMR (CDCl₃, 300 MHz): 7.40-7.29 (m, 5 H); 5.48 (br. s, 1 H); 5.22 (br. s, 1 H); 5.09 (s, 2 H); 4.45-4.34 (m, 1 H); 3.73 (dd, J = 3.7, 12.2, 1 H); 3.74 (s, 3 H); 3.60 (dd, J = 4.3, 10.6, 1 H); 1.44 (s, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 171.5; 167.5; 156.7; 136.2; 128.5; 128.1; 127.8; 66.9; 53.9; 52.6; 42.8; 29.6. ESI-MS: 375 ($[M + Na]^+$). HR-ESI-MS: 375.1539 ($[M + Na]^+$, C₁₇H₂₄N₂NaO₆⁺; calc. 375.1532).

Methyl (2S)-2-*[[* (tert-*Butoxy*)*carbonyl]amino]*-3-*[[*(9H-*fluoren-9-ylmethoxy*)*carbonyl]amino]propanoate* (**5b**). To the crude **10a** (0.11 g, 0.5 mmol) and NaHCO₃ (0.11 g, 1.0 mmol) in MeOH was added FmocCl (0.75 mmol) under Ar at 0°. The mixture was stirred for 5 h at r.t. and then concentrated to afford a grayish oil. The grayish oil was dissolved in AcOEt (10 ml), the soln. washed with sat. NaHCO₃ soln. (1×5 ml), 1M HCl (1×5 ml), and brine (2×10 ml), dried (Na₂SO₄), and concentrated to afford a white solid. This crude product was partially soluble in CH₂Cl₂. The white solid that did not dissolve in CH₂Cl₂ was filtered off through a *Celite* pad, eluting with CH₂Cl₂. The crude that was obtained after filtration and concentration was further purified by flash CC (SiO₂, hexane/AcOEt 7:3): **5b** (0.13 g, 62%). Semi-solid. [a]²⁵₂ = -12.5 (c = 2.0, MeOH) ([6a]: [a]²⁵₂ = -13.2 (c = 1.50, MeOH)). IR (neat): 3345, 2975, 1690, 1549, 1499, 1365, 1250, 1164. ¹H-NMR (CDCl₃, 300 MHz): 7.77 (d, J = 7.6, 2 H); 7.42 - 7.26 (m, 6 H); 5.42 (br. s, 1 H); 5.19 (s, 1 H); 4.38 (m, 3 H); 4.21 (t, J = 6.1, 1 H); 3.74 (s, 3 H); 3.62 (m, 2 H); 1.44 (s, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 172.5; 144.4; 141.5; 137.9; 127.8; 127.6; 127.1; 124.7; 120.1; 73.5; 71.3; 69.6; 65.2; 50.4; 42.8; 31.9; 29.7. ESI-MS: 441 ([M + H]⁺). HR-ESI-MS: 441.4644 ([M + H]⁺, C₂₄H₂₈N₂O⁺₃; calc. 441.4632).

Benzyl N-[*(*IS)-*1*-(*Furan-2-yl*)-*2*-*nitroethyl*]*carbamate* (**8b**). As described for **8a**, with **7b** (1.92 g, 5 mmol), **A**, toluene, MeNO₂, and CsOH · H₂O. CC (SiO₂, hexane/AcOEt 9:1) afforded **8b** (1.18 g, 82%). White solid. HPLC (chiral *OD-H* (λ_{max} 220 nm), hexane/EtOH 7:3, 1 ml/min): 99% ee; t_R (major) 11.83 min, t_R (minor) 16.01 min. [a]₂₅²⁵ = -19.5 (c = 2.0, CHCl₃) ([11c]: [a]₂₅²⁵ = +16.5 (c = 1.50, CHCl₃)). IR (neat): 3311, 1701, 1552, 1507, 1378, 1331, 1429. ¹H-NMR (CDCl₃, 500 MHz): 7.36 – 7.26 (m, 6 H); 6.29 (dd, J = 2.8, 9.6, 2 H); 6.21 (br. d, 1 H); 5.50 – 5.42 (m, 1 H); 5.19 (s, 2 H); 4.82 (dd, J = 5.1, 12.8, 1 H); 4.64 (dd, J = 5.4, 13.0, 1 H). ¹³C-NMR (CDCl₃, 75 MHz): 155.2; 142.8; 142.8; 128.6; 128.4; 128.3; 110.8; 108.1; 96.2 76.2; 67.5; 47.8. ESI-MS: 313 ([M + Na]⁺). HR-ESI-MS: 313.0803 ([M + Na]⁺, C₁₄H₁₄N₂NaO₃⁺; calc. 313.0800).

Methyl (2S)-2-{[(Benzyloxy)carbonyl]amino]-3-nitropropanoate (**9b**). As described for **9a**, with NaIO₄, CCl₄, MeCN, H₂O, RuCl₃·H₂O, **8b** (1.02 g, 3.5 mmol), MeCN (10 ml), and CH₂N₂ in Et₂O (30 mmol): CC (SiO₂, hexane/acetone 4:1) gave **9b** (0.64 g, 65%). White semi-solid. [α]_D²⁵ = -26.2 (c = 2.0, CHCl₃). IR (neat): 3364, 2945, 1709, 1549, 1499, 1376, 1256, 1262. ¹H-NMR (CDCl₃, 300 MHz): 7.40-7.33 (m, 5 H); 5.79 (br. *s*, 1 H); 5.22 (br. *s*, 1 H); 5.14 (s, 2 H); 5.00 (dd, J = 3.2, 14.7, 1 H); 4.82 (m, 2 H); 3.83 (s, 3 H); 3.60 (dd, J = 4.3, 10.6, 1 H); 1.44 (s, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 171.5; 167.5;

156.7; 136.2; 128.5; 128.1; 127.8; 66.9; 53.9; 52.6; 42.8; 29.6. ESI-MS: 375 ($[M + Na]^+$). HR-ESI-MS: 305.6532 ($[M + Na]^+$, $C_{12}H_{14}N_2NaO_6^+$; calc. 305.6524).

Methyl (2S)-2-*[[* (*Benzyloxy*)*carbonyl]amino]-3-{[* (tert-*butoxy*)*carbonyl]amino]propanoate* (**6a**). As described for **5a**, with **9b** (0.564 g, 2 mmol), NiCl₂ · 6 H₂O, MeOH, and NaBH₄: crude **10b** (0.38 g, 75%). Then as described for **5a**, with **10b** (0.125 g, 0.5 mmol), CH₂Cl₂, (Boc)₂O, and DMAP: **6a** (0.11 g, 68%). Brown dense liquid. $[\alpha]_{D}^{25} = -15.8 (c = 2.0, CHCl_3)$. IR (neat): 3334, 2978, 1726, 1677, 1619, 1536, 1495, 1449, 1370, 1272, 1159, 1094. ¹H-NMR (CDCl₃, 300 MHz): 7.42–7.37 (*m*, 5 H); 6.21 (br. *d*, 1 H); 5.28 (br. *s*, 1 H); 5.22 (*s*, 2 H); 4.24–4.11 (*m*, 1 H); 3.30 (*dd*, *J* = 3.2, 10.6, 1 H); 3.18 (*dd*, *J* = 3.4, 9.6, 1 H); 1.52 (s, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 172.3; 168.1; 159.5; 135.01; 131.41; 128.9; 128.3; 128.1; 127.9; 75.6; 53.7; 42.6; 28.93; 24.40. ESI-MS: 375 ([*M* + Na]⁺). HR-ESI-MS: 375.6239 ([*M* + Na]⁺, C₁₂H₁₄N₂NaO₆⁺; calc. 375.6251).

Methyl (2S)-2-*[[* (*Benzyloxy*)*carbonyl]amino]-3-{[[* (9H-*fluoren-9-ylmethoxy*)*carbonyl]amino]propanoate* (**6b**). To the crude **10b** (0.12 g, 0.5 mmol) and Et₃N (0.11 g, 1.0 mmol) in CH₂Cl₂ was added FmocCl (0.75 mmol) under Ar at 0°. The mixture was stirred for 3 h at r.t. and then concentrated to afford a semi-solid. The semi-solid was dissolved in AcOEt (10 ml), the org. layer washed with sat. NaHCO₃ soln. (1×5 ml), 1M HCl (1×5 ml), and sat. NaCl soln. (2×10 ml), dried (Na₂SO₄), and concentrated to afford a white solid. This crude product was purified by CC (SiO₂, hexane/acetone 7:3): **6b** (0.13 g, 62%). Semi-solid. [a]₂₅²⁵ = -17.3 (c = 2.0, CHCl₃). IR (neat): 3345, 2975, 1690, 1549, 1499, 1365, 1250, 1164. ¹H-NMR (CDCl₃, 300 MHz): 7.79 (d, J = 7.3, 2 H); 7.66 (d, J = 7.3, 2 H); 7.42 - 7.26 (m, 11 H); 5.40 (br. *s*, 1 H); 5.10 (s, 2 H); 4.37 (m, 3 H); 4.18 (t, J = 4.4, 1 H); 3.68 (s, 3 H); 3.64 (m, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): 172.7; 157.3; 155.5; 143.6; 142.3; 135.4; 128.3; 127.6; 127.1; 126.3; 120.3; 67.3; 57.4; 51.8; 47.2; 42.8. ESI-MS: 475 ([M + H]⁺). HR-ESI-MS: 475.1539 ([M + H]⁺, C₁₇H₂₄N₂NaO₆⁺; calc. 475.1532).

Methyl (2R)-2-*[[* (tert-*Butoxy*)*carbonyl]amino]*-2-(*furan*-2-*yl*)*acetate* (**11a**). To the stirred soln. of **8a** (0.51 g, 2 mmol) in DMF/H₂O 7:1 (0.4M) and AcOH (0.60 g, 10 mmol) was added solid NaNO₂ (0.83 g, 12 mmol) at r.t. The mixture was heated to 45° for 12 h. Then, the reaction was quenched with H₂O (20 ml), the mixture extracted with CH₂Cl₂ (3 × 20 ml), and the org. extract washed with H₂O (2 × 10 ml) and brine (2 × 10 ml), dried (Na₂SO₄), and concentrated. The crude residue was dissolved in dry CH₂Cl₂ (10 ml) and benzene (2.5 ml) at 0°. To this, CH₂N₂ in Et₂O (20 mmol) was added. After 3 h of stirring at r.t., the mixture was concentrated and the residue purified by CC (SiO₂, hexane/AcOEt 9:1): **11a** (0.35g, 68%). Brown liquid. [*a*]₂₅²⁵ = -68.5 (*c* = 2.0, CHCl₃). IR (neat): 3362, 2973, 2924, 2855, 1748, 1499, 1158. ¹H-NMR (CDCl₃, 300 MHz): 7.33 (*t*, *J* = 1.3, 1 H); 6.31 (*dd*, *J* = 1.5, 2 H); 5.40 (br. *s*, 1 H); 3.76 (*s*, 3 H); 1.44 (*s*, 9 H). ¹³C-NMR (CDCl₃, 75 MHz): 154.7; 136.9; 128.5; 126.3; 80.4; 78.8; 52.7; 28.1. ESI-MS: 278 ([*M*+H]⁺). HR-ESI-MS: 278.1593 ([*M*+H]⁺, C₁₂H₁₇NNaO[‡]; calc. 278.1582).

Methyl (2R)-2-*[[*(*Benzyloxy*)*carbonyl]amino]*-2-(*furan*-2-*yl*)*acetate* (**11b**). As described for **11a**, with **8b** (0.29 g, 1 mmol), DMF/H₂O 7:1 (0.4M), AcOH (0.30 g, 5 mmol), and NaNO₂ (0.42 g, 6 mmol). Quenching with H₂O (10 ml) and extraction with CH₂Cl₂ (3×10 ml). The crude residue in dry CH₂Cl₂ (8 ml) and benzene (1.5 ml) at 0° was treated with CH₂N₂ in Et₂O (10 mmol) as described for **11a**. CC (SiO₂, hexane/AcOEt 85:15) gave **11b** (0.17 g, 60%). Brown liquid. $[a]_{D}^{25} = -72.5$ (c = 2.0, CHCl₃). IR (neat): 2975, 1690, 1549, 1499, 1365, 1250, 1164. ¹H-NMR (CDCl₃, 300 MHz): 7.34 – 7.26 (m, 6 H); 6.34 – 6.30 (m, 2 H); 5.72 (d, J = 7.3, 1 H); 5.46 (d, J = 8.3, 1 H); 5.08 (s, 2 H); 4.64 (s, 1 H); 3.75 (s, 3 H). ¹³C-NMR (CDCl₃, 75 MHz): 169.2; 155.4; 148.5; 142.8; 135.9; 128.5; 128.1; 126.9; 110.6; 108.6; 67.2; 53.0; 51.9. ESI-MS: 312 ($[M + Na]^+$). HR-ESI-MS: 312.0847 ($[M + Na]^+$, C₁₅H₁₅NNaO₅⁺; calc. 312.0847).

Benzyl N-{(1S)-2-{[(tert-Butyl)dimethylsily]]oxy]-1-(furan-2-yl)ethyl]carbamate (12). To the stirred soln. of **11b** (0.14 g, 0.5 mmol) in dry CH₂Cl₂ was added 1M DIBAL-H in toluene (1.5 ml) at -78° via syringe. The mixture was stirred for 1 h at -78° and for 2 h at -30° . Then, the reaction was quenched with MeOH (1 ml), the mixture extracted with AcOEt (3 × 10 ml), and the org. extract washed with 0.1N HCl (2 × 10 ml) and brine (2 × 10 ml), dried (Na₂SO₄), and concentrated to give crude primary alcohol (80%). To the primary alcohol (0.10 g, 0.4 mmol) in dry CH₂Cl₂ was added Et₃N (0.20 g, 0.8 mmol) followed by 'BuMe₂SiCl (0.09 g, 0.6 mmol) at 0° successively. The mixture was stirred for 5 h at r.t. After 5 h, the solids were filtered through a *Celite* pad, and the resultant crude residue was purified by CC (SiO₂, hexane/AcOEt 8:2): **12** (0.11 g, 76%). Colorless oil. $[a]_{25}^{25} = -14.1$ (c = 2.0, CH₂Cl₂) ([13c]: $[a]_{125}^{25} = +13.1$ (c = 1.15, CH₂Cl₂)). IR (neat): 3452, 3331, 2929, 2856, 1725, 1499, 1249, 1134. ¹H-NMR (CDCl₃, 300 MHz): 7.38-7.28 (m, 6 H); 6.32 (dd, J = 1.8, 3.5, 1 H); 6.23 (d, J = 3.4, 1 H); 5.11 (s, 2 H);

5.04 (t, J = 3.9, 1 H); 4.82 (t, J = 6.0, 1 H); 3.51 (m, 1 H); 0.87 (s, 9 H); -0.05 (s, 6 H). ¹³C-NMR (CDCl₃, 75 MHz): 156.3; 154.4; 131.9; 136.5; 128.5; 128.1; 127.2; 110.1; 107.0; 67.3; 66.7; 46.1; 25.7; 18.1; -5.4. ESI-MS: 398 ($[M + Na]^+$). HR-MS: 398.1777 ($[M + Na]^+$, C₂₀H₂₉NNaO₄Si⁺; calc. 398.1763).

REFERENCES

- [1] A. Viso, R. F. De la Pradilla, A. García, A. Flores, Chem. Rev. 2005, 105, 3167.
- [2] R. Kuwano, S. Okuda, Y. Ito, *Tetrahedron: Asymmetry* 1998, 9, 2773; A. J. Robinson, P. Stanislawski, D. Mulholland, L. He, H.-Y. Li, J. Org. Chem. 2001, 66, 4148; K. Muñiz, M. Nieger, Chem. Commun. 2005, 2729; I. Almodovar, C. H. Hovelmann, J. Streuff, M. Nieger, K. Muñiz, Eur. J. Org. Chem. 2006, 704; A. Guerrini, G. Varchi, C. Samori, A. Battaglia, Eur. J. Org. Chem. 2008, 3834; R. G. Arrayás, J. C. Carretero, Chem. Soc. Rev. 2009, 38, 1940.
- [3] C. Yuan, R. M. Williams, J. Am. Chem. Soc. 1997, 119, 11777; K. Groebke, P. Renold, K. Y. Tsang, T. J. Allen, K. F. McClure, D. S. Kemp, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4025; S. Padmanabhan, E. J. York, J. M. Stewart, R. L. Baldwin, J. Mol. Biol. 1996, 257, 726.
- [4] a) I. H. Gilbert, D. C. Rees, A. K. Crockett, R. C. F. Jones, *Tetrahedron* 1995, 51, 6315; b) H. L. van Maanen, H. Kleijn, J. T. B. H. Jastrzebski, J. Verweij, P. G. Kieboom, G. van Koten, J. Org. Chem. 1995, 60, 4331; c) W. Dürckheimer, J. Blumbach, R. Lattrell, K. H. Scheunemann, Angew. Chem., Int. Ed. 1985, 24, 180.
- [5] R. Cooper, A. C. Horan, F. Gentile, V. Gullo, D. Loebenberg, J. Marquez, M. Patel, M. S. Puar, I. Truumees, *J. Antibiot.* 1988, 41, 13; J. A. Pesti, J. Yin, L.-H. Zhang, L. Anzalone, R. E. Waltermire, P. Ma, E. Gorko, P. N. Confalone, J. Fortunak, C. Silverman, J. Blackwell, J. C. Chung, M. D. Hrytsak, M. Cooke, L. Powell, C. Ray, *Org. Proc. Res. Dev.* 2004, 8, 22.
- [6] a) E. A. Englund, H. N. Gopi, D. H. Appella, Org. Lett. 2004, 6, 213; b) R. Caputo, E. Cassano, L. Longobardo, G. Palumbo, Tetrahedron 1995, 51, 12337; c) P. J. Colson, L. S. Hegedus, J. Org. Chem. 1993, 58, 5918; d) R. C. F. Jolles, A. K. Crockett, D. C. Rees, I. H. Gilbert, Tetrahedron: Asymmetry 1994, 5, 1661; e) C. Cativiela, M. D. Díaz-de-Villegas, J. A. Galvéz, Tetrahedron: Asymmetry 1994, 5, 1465; f) R. Badorrey, C. Cativiela, M. D. Diaz-de-Villegas, J. A. Gálvez, Tetrahedron: Asymmetry 1995, 6, 2787; g) E. Castellanos, G. Reyes-Rangel, E. Juaristi, Helv. Chim. Acta 2004, 87, 1016; h) S. S. Chauhan, H. J. Wilk, Tetrahedron Lett. 2010, 51, 3340.
- [7] A. J. Robinson, C. Y. Lim, L. He, P. Ma, H.-Y. Li, J. Org. Chem. 2001, 66, 4141; D. Choi, H. Kohn, Tetrahedron Lett. 1995, 36, 7371; F. Kelleher, K. Proinsias, Tetrahedron Lett. 2007, 48, 4879
- [8] G. A. Cutting, N. E. Stainforth, M. P. John, G. Kociok-K"hn, M. C. Willis, J. Am. Chem. Soc. 2007, 129, 10632; Y. Ohfune, T. Shinada, Bull. Chem. Soc. Jpn. 2003, 76, 1115; Z. Chen, H. Morimoto, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2008, 130, 2170; Y. Kim, H.-J. Ha, K. Han, S. W. Ko, H. Yun, H. J. Yoon, M. S. Kim, W. K. Lee, Tetrahedron Lett. 2005, 46, 4407; H. Teng, Z. Jing, L. Wu, J. Su, X. Feng, G. Qiu, S. Liang, X. Hu, Synth. Commun. 2006, 3803; C. Zhao, C. Song, Y. Luo, Z. Yu, M. Sun, FEBS Lett. 2008, 582, 3125.
- [9] D. Enders, J. Wiedemann, Synthesis 1996, 1443; D. Lucet, L. Toupet, T. Le Gall, C. Mioskowski, J. Org. Chem. 1997, 62, 2682.
- [10] K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V. Gothelf, K. A. Jørgensen, J. Am. Chem. Soc. 2001, 123, 5843.
- [11] a) C. Palomo, M. Oiarbide, A. Laso, R. López, J. Am. Chem. Soc. 2005, 127, 17622; b) E. Gomez-Bengoa, A. Linden, R. López, I. Múgica-Mendiola, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2008, 130, 7955; c) X. Xu, T. Furukawa, T. Okino, H. Miyabe, Y. Takemoto, Chem. Eur. J. 2006, 12, 466.
- [12] G. Kumaraswamy, N. Jayaprakash, B. Sridhar, J. Org. Chem. 2010, 75, 2745.
- [13] a) M. H. Haukaas, G. A. O'Doherty, Org. Lett. 2001, 3, 401; b) S. D. Koulocheri, P. Magiatis, S. A. Haroutounian, J. Org. Chem. 1984, 49, 4277; c) A. S. Radhakrishna, M. E. Parham, R. M. Riggs, G. M. Loudon, J. Org. Chem. 1979, 44, 1746.

Received January 11, 2011